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Abstract

This paper focuses on the development of a homogenized energy model which quantifies certain
facets of the direct magnetomechanical effect. In the first step of the development, Gibbs energy
analysis at the lattice level is combined with Boltzmann principles to quantify the local average
magnetization as a function of input fields and stresses. A macroscopic magnetization model, which
incorporates the effects of polycrystallinity, material nonhomogeneities, stress-dependent interaction
fields, and stress-dependent coercive behavior, is constructed through stochastic homogenization
techniques based on the tenet that local coercive and interaction fields are manifestations of underly-
ing distributions rather than constants. The resulting framework incorporates previous ferromagnetic
hysteresis theory as a special case in the absence of applied stresses. Attributes of the framework
are illustrated through comparison with previously published steel and iron data.
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1 Introduction

The characterization of magnetoelastic effects is a classical problem which has significant ramifica-
tions for both material characterization and magnetic transducer design. The generation of strains
due to field-induced moment rotation or domain wall movement is fundamental for actuator design
whereas characterization of magnetization changes due to input stresses is crucial for magnetic sen-
sors as well as actuators operating in high stress regimes [12–14,22]. The coupling between the two
effects adds to the complexity of the phenomena.

In this paper, we focus on the characterization of the direct magnetomechanical effect, or Villari
effect, which constitutes changes in the magnetization due to stress-induced domain wall movement
and moment rotation. At the macroscopic level, this effect is delineated by a number of cooperative
phenomena including (i) stress-dependent behavior of the anhysteretic magnetization Man, anhys-
teretic induction Ban, remanent magnetization MR, remanent induction BR, and coercive field Hc,
(ii) asymmetric magnetization response to compressive and tensile stresses, and (iii) decay of the
magnetization M to Man (equivalently B to Ban).

1.1 Stress-Dependence of Man, Ban, MR, BR and Hc

The effect of stress on the anhysteretic and hysteretic behavior of steel are illustrated in Figure 1 with
data from Pitman [21]. Similar behavior is reported in Bozorth [4] for 68 permalloy and nickel and
Calkins [8] for Terfenol-D. It is observed that as stresses are changed from +100 MPa to −400 MPa,
Ban transitions from almost constant behavior at ±Bs to a highly mollified curve with decreased
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Figure 1: Hysteretic (—–) and anhysteretic (– – –) H-B behavior of steel data from Pitman [21] for
differing input stress levels: (a) 100 MPa, (b) 0 MPa, (c) -200 MPa, and (d) -400 MPa.

1



maximal values. For the hysteresis curves, the differential permeability dB
dH is nearly constant for

σ = 100 MPa which indicates a small degree of pre-remanence switching and yields a large remanence
induction BR. Conversely, there is significant pre-remanence switching for σ = −400 MPa which
increases the coercive field Hc and significantly diminishes BR.

The hysteresis data in Figure 1 illustrates one effect of stresses on the local interaction field HI .
The data collected with σ = 100 MPa exhibits negligible HI and little pre-remanence switching.
For large compressive stresses, however, HI is sufficiently large that effective fields He = H + HI

produce switching far in advance of remanence. As detailed by Goodenough [16], the decrease in HI

for tensile stresses can be attributed in part to stress-enhanced common easy axes between grains.
The ramifications of these observations for model development will be discussed in Section 3.3.

The data obtained with fixed compressive stresses also illustrates that both the local coercive
fields Hc and local interaction fields HI are manifestations of underlying distributions rather than
constant coefficients. The distributed nature of Hc is reflected in the observation that dB

dH is finite at
±Hc whereas the variance in HI is indicated by the fact dB

dH is changing as the applied field is reduced
to zero — materials having a small variance in HI would exhibit nearly linear behavior differential
permeabilities at remanence. The incorporation of densities for HI and Hc to accommodate the
effects of polycrystallinity, material nonhomogeneities, and various stress-dependencies is one of the
hallmarks of the framework.

To further illustrate the anhysteretic behavior of steel, we plot in Figure 2 anhysteretic data from
Jiles and Atherton [18] collected at higher field inputs than the Pitman steel data shown in Figure 1.
The crossing of the anhysteretic curves at different field and stress values constitutes the Villari
reversal and plays a fundamental role in the determination of appropriate Gibbs energy functionals.
Additionally, it has been observed in [1, 23] that for biased operating regimes, the magnetization or
induction can approach offset anhysteretic curves associated with biased minor loops. Hence theory
must also accommodate this effect since transducers typically operate in such biased regimes.

The physical mechanisms which produce these macroscopic effects are complex and, for many
materials and operating conditions, are not well understood. We summarize here only certain mech-
anisms which are pertinent for subsequent model development.

From a theoretical perspective, the anhysteretic magnetization (or induction) represents the
global equilibrium configuration of the magnetization (or induction) for a specified field level. The
pinning sites and easy axes provide local minima in underlying energy relations which determine the
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Figure 2: Stress-dependent anhysteretic data from Jiles and Atherton [18].
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magnetization (or induction) unless sufficient energy is provided to overcome the local barriers and
achieve the global minimum provided by Man (Ban).

In the models developed in this paper, Man depends on the choices of Gibbs energy and interaction
field behavior. The stress-dependence and Villari reversal illustrated by the data in Figures 1 and 2
are accommodated through the choice of Gibbs functional and interaction field density.

1.2 Asymmetry of Magnetization (Induction) Changes for Tensile and Compres-
sive Stresses

Asymmetry properties of the magnetomechanical effect for compressive and tensile stresses are illus-
trated in Figure 3 with steel data from Craik and Wood [10] collected at fixed field levels of 26.6 A/m
and 132 A/m. For the first case, it is observed that for low stress levels (e.g., less than 10 MPa),
positive and negative stress inputs produce similar changes in B. This forms the basis for Brown’s
theory [7] which posits that at low levels, positive and negative stresses have the same influence on
90o domain walls and hence produce equal changes in the magnetization or induction. However,
some asymmetry between positive and negative stresses is observed at essentially all input levels and
the asymmetry is profound at higher stress levels.

Additional observations which prove important for model development are the following.

(i) For H = 26.6 A/m, dB
dσ changes sign at approximately σ = 80 MPa and σ = −50 MPa. This

represents the tensile and stress levels required to drive B to the anhysteretic curve Ban at this
fixed field level — see Section 3.1 for additional details regarding this phenomenon.

(ii) The slope dB
dσ is discontinuous at the minimum value.

It will be demonstrated in Section 4 that similar properties are shared by data from other compounds.
In concert, these properties demonstrate that stress-induced pressure on 90o domain walls does

not provide the sole mechanism producing magnetomechanical effects and additional mechanisms
which must be incorporated include stress-induced changes in the anhysteretic magnetization (in-
duction), stress-dependence of local coercive fields Hc, and anisotropic phenomena associated with
preferential alignment with easy axes that coincide with applied stresses.

1.3 Approach to the Anhysteretic Curve

Figure 4 further illustrates the manner through which the application of an applied compressive
stress drives the induction (equivalently, magnetization) near positive and negative remanence (H =
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Figure 3: σ-B behavior of steel data from Craik and Wood [10] at field levels of (a) 26.6 A/m and
(b) 132 A/m.
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Figure 4: (a) Manner through which the magnetization near positive remanence is driven to the
anhysteretic curve through application of compressive stresses; (b) and (c) steel data from Pitman [21]
quantifying the σ-B behavior for steel near positive and negative remanence.

80 A/m) to the anhysteretic value Ban (Man). As detailed in Pitman [21], a steel specimen was
driven to both positive and negative saturation and then held at the constant field value 80 A/m
while compressive stresses were applied and subsequently released. A comparison of the data plotted
in Figures 4(b) and (c) illustrates that in both cases, the induction was driven to Ban by input stresses
of approximately σ = −300 MPa. These stresses are thus sufficiently large to eliminate local minima
associated with pinning sites so that the induction equilibrates to the global minimum associated
with Ban. In other words, local coercive fields have been reduced to zero. Close examination of the
σ-B relations upon stress release reveals that they are not constant thus reiterating the observation
that the global minima associated with Ban are stress-dependent as illustrated in Figures 1 and 2.

Additionally, it has been observed that the rate and manner in which the induction or magneti-
zation approaches the anhysteretic are also dependent on the stress rate dσ

dt . This rate-dependence
was likely first noted by Ewing who observed that the remanence values and hysteresis associated
with a soft iron wire were significantly reduced by a series of impacts [5,23] whereas Brown [7] noted
that for certain materials, a single impact was sufficient to drive M to Man. Hence when modeling
this phenomenon, we quantify the dependence of local coercive fields Hc on both σ and dσ

dt .
The stress-induced reduction in local coercive fields can be attributed in part to non-180o switch-

ing (90o domain wall movement in iron and steel). As noted previously, however, sole consideration of
90o domain wall movement does not explain the asymmetric changes shown in Figure 3 for compres-
sive and tensile stresses. Hence 90o domain wall processes motivate aspects of the characterization
framework but do not constitute the sole mechanism in the model.

1.4 Model Development

An early model for the direct magnetomechanical effect was provided by Brown [7] based on the tenet
that at low levels, stress-induced changes in the magnetization obey Rayleigh’s law. Whereas this
theory predicts phenomena such as shock-induced magnetization changes, it does not accommodate
the asymmetric tensile-compressive behavior shown in Figure 3. In [17, 20], Jiles and Li provide
a model which does accommodate a number of the phenomena illustrated in Figures 1–4. This
model extends the framework of Jiles and Atherton [18,19] — which is based on the construction of
anhysteretic, irreversible and reversible magnetization components Man, Mrev, Mirr — through the
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incorporation of stress-dependence in Man and a law of approach based on the elastic energy. For
feedback control applications, however, this framework can have limited utility since biased minor
loop closure can only be enforced with a priori knowledge of turning points — with feedback control,
turning points are dictated by state behavior which is typically unknown when control is initiated.

In this paper, we construct a model for the direct magnetomechanical effect with the goal of
providing sufficient accuracy for material characterization and sufficient efficiency for optimal device
design and real-time control implementation. To accommodate a wide range of magnetic actuator and
sensor applications, the framework is constructed to encompass a broad range of inputs, operating
conditions, and constituent materials, and to provide the robustness required for control design.

The model is based on the framework developed in [24–26] to quantify the hysteretic and nonlinear
H-M and H-B behavior of ferromagnetic materials. In the first step of that development, Helmholtz
and Gibbs energy relations are constructed at the lattice level to quantify the local average magne-
tization for homogeneous materials and effective fields. In the second step of the development, the
effects of polycrystallinity, material nonhomogeneities, and variable effective fields are incorporated
by positing that local coercive fields Hc and interaction fields HI are manifestations of underlying
distributions rather than constants. Stochastic homogenization in this manner provides macroscopic
models which accurately characterize a wide range of material behavior — including closure of bi-
ased minor loops when appropriate, magnetic after-effects and thermal relaxation, and anhysteretic
behavior — and are sufficiently efficient to permit subsequent control implementation.

Here we extend that framework to accommodate the stress-dependent magnetization behavior as-
sociated with the direct magnetomechanical effect. In the lattice-level energy relations, this requires
extension of the Helmholtz and Gibbs energy expressions to incorporate elastic and magnetoelastic
energy components associated with measured σ-M , σ-B, σ-Man and σ-Ban behavior. In the stochas-
tic homogenization component, we determine phenomenological expressions for the densities ν1 and
ν2, associated with the local coercive field Hc and interaction field HI , which accommodate the decay
in coercivity observed in Figure 4 and changing interaction field behavior shown in the hysteresis
data in Figure 1.

In [24], it is demonstrated that the original framework provides constitutive relations which can
subsequently be used to construct distributed models for a wide range of actuators with field inputs.
Similarly, the extended magnetomechanical model can be used to construct distributed models for
magnetic sensors and actuators subjected to field and/or stress inputs.

In Section 2, we summarize the hysteresis framework of [24–26], and in Section 3, we extend it
to construct the magnetomechanical model. Attributes of the model are demonstrated in Section 4
through fits to experimental steel and iron data.

2 Magnetic Hysteresis Model

To provide the underlying framework for the magnetomechanical model, we summarize first the
model developed in [24–26] which quantifies the hysteresis and constitutive nonlinearities inherent
to the H-M and H-B behavior of ferromagnetic materials. The model was developed in the context
of uniaxial materials but is generally applicable to isotropic and weakly anisotropic materials. The
framework provides the capability for incorporating magnetic after-effects and thermal relaxation
but does not include eddy current losses; hence it should be employed for low frequency regimes or
transducer architectures for which eddy current losses are minimal.

As detailed in [24–26], application of mean field theory at the lattice level yields the Helmholtz
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energy relation

ψ(M, T ) =
HhMs

2
[
1− (M/Ms)2

]
+

HhT

2Tc

[
M ln

(
M + Ms

Ms −M

)
+ Ms ln(1− (M/Ms)2)

]
(1)

which quantifies the internal energy at temperature T . Here Ts, Hh and Ms respectively denote the
Curie point for the material, a bias field, and the saturation magnetization. We note that (1) yields
a double well potential for T < Tc and a single well for T > Tc so that Tc delineates the transition
between ferromagnetic and paramagnetic phases.

For fixed temperature regimes, the efficiency and robustness of subsequent models can be im-
proved by truncating Taylor expansions of (1) about the stable and unstable equilibria to obtain the
piecewise quadratic relation

ψ(M) =


1
2η(M + MR)2 , M ≤ −MI

1
2η(M −MR)2 , M ≥ MI

1
2η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI

=


1
2η(M − δMR)2 , M ≤ −MI

1
2η(M + δMR)2 , M ≥ MI

1
2η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI

(2)

where δ = sign(M). As shown in Figure 5, the local remanence value MR occurs at the positive
argmin(ψ), MI is the positive inflection point, and η is the reciprocal of the slope for the hysteresis
kernel after switching. For simplicity, we will focus on (2) throughout the remainder of the discussion
while noting that analogous theory holds for (1) as detailed in [24–26].

The Gibbs energy relation
G(H, M) = ψ(M)− µ0HM (3)

incorporates the magnetostatic energy µ0HM which quantifies work due to an applied field (µ0

denotes the permeability). The behavior of G for H = 0 and H > 0 is depicted in Figure 5(a).

GG
(M)=G(0,M)G

(b)

c

I

2 (H  (H

RI

R

,M),M)1

0

ψ

(a)

H

M M M M

H

M

M

H

M

M

H

MM

M

Figure 5: (a) Helmholtz energy ψ and Gibbs energy G for increasing field H (H2 > H1 > 0).
(b) Dependence of the local average magnetization M given by (4) or (5) on the field in the absence
of thermal activation.
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For operating regimes in which relaxation phenomena or magnetic after-effects are negligible, the
local average magnetization M is determined directly through minimization of G. For the Helmholtz
relation (2), enforcement of the sufficient condition ∂G

∂M = 0 yields

M(H) =
µ0

η
H + MRδ (4)

where, again, δ = 1 for positively oriented moments and δ = −1 for those with negative orientation.
To quantify δ in terms of initial moment configurations and previous switches, we employ Preisach
notation and take

[M(H; Hc, ξ)](t) =


[M(H; Hc, ξ)](0) , τ(t) = ∅
µ0

η H −MR , τ(t) 6= ∅ and H(max τ(t)) = −Hc

µ0

η H + MR , τ(t) 6= ∅ and H(max τ(t)) = Hc.

(5)

Here
Hc =

η

µ0
(MR −MI) (6)

denotes the local coercive field and

τ(t) = {ts ∈ (0, t] |H(ts) = −Hc or H(ts) = Hc}

denotes transition times. The initial moment orientation is given by

[M(H; Hc, ξ)](0) =


µ0

η H −MR , H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

µ0

η H + MR , H(0) ≥ Hc .

The behavior of M given by (4) or (5) is depicted in Figure 5(b) and Figure 6(b).
We note that enforcement of ∂G

∂M = 0 with ψ given by (1) yields the familiar Ising relation

M(H) = Mstanh
(

H + αM

a(T )

)
(7)

M0 minM +
minM−

−MI

µ0

M
RM

MI

Hc

µ0 + MR
=minM η H+

µ0 − MR
=minM η H−

HM

(b)

H

−ψG

(a)

M

M

=

Figure 6: (a) Gibbs energy profile with a high level (– – –) and low level (——) of thermal activation
in the Boltzmann probability µ(G) = Ce−GV/kT . (b) Local magnetization M given by equation (9)
with high thermal activation (– – –) and limiting magnetization M specified by (4) or (5) in the
absence of thermal activation (——).
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where α = Hh
µ0Ms

and a(T ) = HhT
µ0Tc

. The incorporation of the magnetization M in the effective field
He = H + αM guarantees that hysterons specified by (7) exhibit noncongruency as measured for
certain materials or operating regimes — e.g., Stoner–Wohlfarth particles.

For regimes in which thermal relaxation or magnetic after-effects are significant, the Gibbs energy
and relative thermal energy kT/V are balanced through the Boltzmann relation

µ(G) = Ce−GV/kT (8)

which quantifies the probability of obtaining the energy level G — see Section 2.6.2 of [24] for an
energy derivation of (8). Here k, V and C respectively denote Boltzmann’s constant, a reference
volume, and an integration constant chosen to ensure integration to unity.

The local average magnetization expression which incorporates thermal relaxation is

M = x+ 〈M+〉+ x− 〈M−〉 (9)

where x+ and x− respectively denote the fractions of moments having positive and negative orienta-
tions and 〈M+〉 , 〈M−〉 are the associated average magnetizations. The latter are quantified by the
general relations

〈M+〉 =
∫ ∞

MI

Mµ(G) dM , 〈M−〉 =
∫ −MI

−∞
Mµ(G) dM

which, upon evaluation of the integration constant, yields

〈M+〉 =

∫ ∞

MI

Me−G(H,M)V/kT dM∫ ∞

MI

e−G(H,M)V/kT dM

, 〈M−〉 =

∫ −MI

−∞
Me−G(H,M)V/kT dM∫ −MI

−∞
e−G(H,M)V/kT dM

. (10)

The evolution of moment fractions are quantified by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(11)

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+)

through the identity x+ + x− = 1. Here

p+− =
1
T

∫ MI

MI−ε
e−G(H,M)V/kT dM∫ ∞

MI−ε
e−G(H,M)V/kT dM

, p−+ =
1
T

∫ −MI+ε

−MI

e−G(H,M)V/kT dM∫ −MI+ε

−∞
e−G(H,M)V/kT dM

(12)

respectively denote the likelihoods that moments switch from positive to negative, and conversely.
In these relations, ε is a small positive constant and T denotes the material-dependent relaxation
time so that ω = 1

T quantifies the frequency at which moments attempt to switch.
As depicted in Figure 6, the local magnetization relation (9) incorporates moment switching

due to thermal processes in advance of fields required to eliminate minima of G. This mollifies the
switching profile and reduces the local coercive field as compared with the thermally inactive hysteron
(4) or (5). It is proven in [24, 25] that the thermally active magnetization relation (9) converges to
the relation (7) in the limit kT/V → 0 of negligible relative thermal energy.
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To incorporate the effects of polycrystallinity, material and field nonhomogeneities, inclusions,
and texture, we make the assumption that lattice nonhomogeneities produce a distribution of Gibbs
energy relations of the form (3). This variability can be incorporated through the assumption that
the local coercive field Hc given by (6) and interaction field HI are stochastically distributed with
respective unnormalized densities ν1 and ν2 which satisfy the decay criteria

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x , |ν2(x)| ≤ c2e

−a2|x|

(13)

for positive c1, a1, c2, a2. These assumptions enforce the physical properties that local coercive fields
are positive, low-field Rayleigh loops are symmetric [2], and local coercive and interaction fields
decay as a function of distance. As detailed in [24–26], one choice for ν1 and ν2 which facilitates
implementation and provides sufficient accuracy for various materials and applications is

ν1(Hc) =
c1

I1
e−[ln(Hc/Hc)/2c]2

ν2(HI) = c2e
−H2

I /2b2
(14)

where c1, c2, b are positive constants and I1 =
∫∞
0 ν1(Hc)dHc; if the densities are normalized, we note

that I1 = 1. It is shown in [15] that the mean and variance of the lognormal distribution satisfy the
properties

〈Hc〉 ≈ Hc , σ ≈ 2Hc c (15)

if Hc is large compared with c.
The resulting macroscopic magnetization model is

M(H) =
∫ ∞

0

∫ ∞

−∞
ν1(Hc)ν2(HI)M(H + HI ; Hc, ξ)] dHI dHc (16)

with M given by (4), (5) or (9). Approximation of the integrals in (16) yields

M(H) =
Ni∑
i=1

Nj∑
j=1

ν1(Hci)ν2(HIj )M(HIj + H; Hci , ξj)viwj (17)

where HIj , Hci are abscissas and vi, wj are quadrature weights.
Because local coercive fields play no role in the anhysteretic material behavior, the global anhys-

teretic model is
Man(H) =

∫ ∞

0
ν2(HI)Man(H + HI)dHI . (18)

For thermally inactive regimes, the kernel is given by

Man(H + HI) =
µ0

η
(H + HI) + Mrδ(H; HI)

δ(H; HI) = sign(H + HI)
(19)

whereas one would employ the kernel (9) to incorporate magnetic after-effects.
Details regarding the construction, implementation, and accuracy of these models for various

ferromagnetic materials can be found in [24–26].
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Remark 1 In the magnetomechanical model developed in Section 3, the stress-induced decay in the
coercive field, shown in Figure 4, is incorporated by positing a phenomenological expression for the
mean Hc(σ, dσ

dt ) in (14) which depends on σ and dσ
dt .

Remark 2 The stress-dependent interaction field variance exhibited by the data plotted in Figure 1
is incorporated in the model developed in Section 3 through the introduction of a stress-dependent
variance b2(σ) of the normal density ν2.

3 Magnetomechanical Model

To incorporate the magnetomechanical effects detailed in Section 1 and illustrated in Figures 1–4, we
consider three extensions to the hysteresis framework outlined in Section 2: (i) formulation of a more
general Gibbs energy relations which incorporates the elastic energy and effects of magnetomechanical
coupling, (ii) development of a stress-dependent expression for the mean Hc(σ) employed in the
relation (14) for the coercive field density, and (iii) development of a stress-dependent relation for
the variance b2(σ) of the interaction field density ν2(HI) employed in the hysteresis model (16)
and anhysteretic model (18). We note that in the absence of stresses or instance of negligible
applied stresses, the magnetomechanical model reduces to the ferromagnetic hysteresis framework
summarized in Section 2.

3.1 Gibbs Energy

We consider material characterization and actuator and sensor designs for which applied fields and
stresses are co-axial which permits the use of scalar magnetization and strain relations. To incorpo-
rate the stress-dependent anhysteretic behavior shown in Figure 2, we extend the Gibbs relation (3)
to

G(H, M, σ, ε) = ψ(M) + γ4M
4 +

1
2
Y Mε2 − γ1(σ)Y MεM2 − γ2(σ)Y MεM4 − µ0HM − σε (20)

where ψ is given by (2). Here Y M denotes the Young’s modulus at constant magnetization, ε is the
uniaxial strain, γ1(σ) and γ2(σ) are stress-dependent magnetoelastic coupling coefficients, and γ4 is
a constant magnetoelastic coefficient.

For a fixed magnetization level, enforcement of the sufficient condition ∂G
∂ε = 0 yields the nonlinear

constitutive relation
σ = Y Mε− Y Mλ(σ) (21)

where
λ(σ) = γ1(σ)M2 + γ2(σ)M4 (22)

denotes the stress-dependent magnetostriction. Following the approach in Jiles [17], we employ
two-term Taylor expansions

γ1(σ) = γ1(0) + σγ′1(0)

γ2(σ) = γ2(0) + σγ′2(0)
(23)

for the coupling coefficients. It should be noted that the anhysteretic curves will not cross if γ2(σ) = 0
and hence only quadratic magnetoelastic coupling terms are employed in the Gibbs energy. Moreover,
if the magnetostriction is independent of stress, and hence γ′1(0) = γ′2(0) = 0, the anhysteretic curves
will cross at a single point. The anhysteretic behavior shown in Figure 2 dictates the retention of all
four components. Additionally, the quartic term γ4M

4 is included to maintain continuity between the
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internal energy quantified by the Helmholtz energy and the magnetoelastic energy. The coefficients
γ1(0), γ′1(0), γ2(0), γ′2(0) and γ4 are identified through a least squares fit to the data.

For operating regimes in which thermal excitation is sufficient to cause discernible magnetic
after-effects, the local magnetization M is specified by (9) with the Gibbs relation (20) employed
in (10)–(12). For regimes in which thermal activation is negligible, enforcement of the sufficient
condition ∂G

∂M = 0 yields the stress-dependent magnetization relation

[4γ4 − 4γ2(σ)σ]M3 + [2γ1(σ)σ − η]M + [−µ0H − δηMR] = 0. (24)

For model construction, this cubic relation can be solved either using a gradient-based optimization
method or directly using the cubic formula summarized in Appendix A.

3.2 Stress-Dependence of Hc(σ)

It is illustrated in Figures 2 and 3 that for fixed field inputs, the application of sufficiently large
compressive or tensile stresses will drive the magnetization M to the anhysteretic curve Man (equiv-
alently B to Ban). As noted in Section 1.3, this can be interpreted as stress-induced elimination
of local minima associated with pinning sites and easy axes so that the magnetization achieves the
global minimum associated with Man. One manifestation of this phenomenon is that local coercive
fields Hc are driven to zero since single-valued anhysteretic curves indicate the absence of Hc.

One mechanism which contributes to this “approach to the anhysteretic” is 90o switching and
90o domain wall movement. As discussed in Section 1.2, however, the measured asymmetry between
compressive and tensile stresses prohibits a sole reliance on this mechanism and a complete char-
acterization of energy phenomena contributing to this effect presently precludes the development of
macroscopic models that are sufficiently efficient for transducer design and control implementation.
Instead, we provide a phenomenological characterization of the coercive field mean 〈Hc(σ)〉 ≈ Hc(σ)
which accommodates the phenomena discussed in Sections 1.2 and 1.3.

Consider the representation

Hc(σ) = Ĥce
−(k1+| dσ

dt |(k̂2σ+k̂3σ2+k̂4sgn(σ))σ)σ

= Ĥce
−(k1σ+k2σ2+k3σ3+k4|σ|)

(25)

where k2 = k̂2

∣∣dσ
dt

∣∣, k3 = k̂3

∣∣dσ
dt

∣∣ and k4 = k̂4

∣∣dσ
dt

∣∣. The fourth term in the exponential incorporates
the slope discontinuity discussed in item (ii) of Section 1.2. The second and fourth terms provide
symmetry for low compressive or tensile stresses whereas the first and third terms provide asymmetry.
For fixed stresses, we note that k2 = k3 = k4 = 0. The behavior of Hc(σ) with positive k1, k2, k3 and
k4 = 0, k4 > 0 is illustrated in Figure 7.

The relation (25) quantifies the reduction in coercive fields achieved during the application of
tensile or compressive stresses but it does not designate the retention of achieved coercive fields
when applied stresses are released. To illustrate, consider the Pitman data shown in Figure 4(c).
The relation (25) is used to quantify Hc(σ) as compressive stresses are increased from 0 MPa to
-400 MPa but the mean remains at Hc(σ) = Hc(−400) as stresses are returned to 0 MPa. For this
complete compressive cycle, the mean coercive field is quantified by the relation

Hc(σ) =

{
Ĥce

−(k1σ+k2σ2+k3σ3+k4|σ|) , dσ
dt < 0

Hc(σmin) , dσ
dt > 0

(26)
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Figure 7: Behavior of Hc(σ) given by (25) with Ĥc, k1, k2, k3 > 0 and (a) k4 = 0, (b) k4 > 0.

where σmin = −400 MPa for this example. Similarly, a single tensile cycle would be quantified using
the expression

Hc(σ) =

{
Ĥce

−(k1σ+k2σ2+k3σ3+k4|σ|) , dσ
dt > 0

Hc(σmax) , dσ
dt < 0 .

(27)

Analogous relations based on previous minima and maxima can be used to characterize the mean
coercive field for multiple cycles.

To construct the density ν1(Hc) given by (14) for a specific material, the parameters Ĥc, k1, k2, k3

and k4 are estimated through a least squares fit to data. As illustrated in Section 4, suitable accuracy
can be obtained for certain materials and operating conditions with null values for certain parameters.

Remark 3 We note that (25)–(27) can be interpreted as parametric representations for an unnor-
malized density for the local coercive field mean.

3.3 Stress-Dependence of b2(σ)

It is noted in Section 1.1 and illustrated in Figure 1 that applied stresses can significantly alter both
the remanence magnetization MR (or remanence induction BR) and the differential susceptibility dM

dH

or differential permeability dB
dH at remanence. The reduction in MR and dM

dH for large compressive
stresses can be attributed in part to local interaction fields HI which cause switching in advance of a
sign reversal in applied fields H. As detailed in Goodenough [16], local interaction field behavior and
associated domains having reversed magnetization are influenced by a number of factors pertaining
to domain wall formation including (i) magnetic annealing and cold rolling to reduce misalignment
between grains, and (ii) alignment of easy axes for varied grain orientations through the application
of tensile stresses. The first mechanisms provide means for controlling the shape of hysteresis loops
and reducing the stress-dependence of local interaction fields — e.g., the anhysteretic and hysteresis
data reported in [18] and summarized in Figure 2 exhibit minimal stress-dependence in HI compared
with the Pitman data shown in Figure 1.

To characterize stress-dependence in HI for materials where it is significant, we consider the
influence of stress on the density ν2(HI). For large tensile stresses, the dearth of pre-remanence
switching indicates a small variance b2 for HI and hence the effective field He = H+HI — we assume
no variation in the applied field H — as depicted in Figure 8(a). For large compressive stresses,
there is significant pre-remanence switching which indicates large b2 as depicted in Figure 8(b).
The variance b2 thus exhibits the qualitative stress-dependence depicted in Figure 9(a) and 9(b)
depending on the degree of emphasis placed on saturating effects for large compressive stresses.
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Figure 8: Interaction field density ν2(HI) with (a) small variance b2, and (b) large variance b2.

In Section 4.2, we employ a polynomial relation of the form

b2(σ) = b0 + b1σ + b2σ
2 + b3σ

3, (28)

which yields the form shown in Figure 9(a), when characterizing the steel data shown in Figure 1.
Analogous relations yielding the behavior shown in Figure 9(b) can be employed if dictated by the
data. We note that when constructing spline representations of the form (28) for b2(σ), units should
be chosen to avoid overflow errors (e.g., MPa rather than Pa).

b2 b2

0
σ

(b)
0

σ
(a)

Figure 9: Interaction field variance with (a) saturation at large tensile stresses, and (b) saturation
for large tensile and compressive stresses.

3.4 Model Parameters

The units, definitions, and interpretations of parameters employed in the magnetomechanical model
are compiled in Table 1.

Parameter MR η c Ĥc b2(σ) C = c1 · c2 γ4

Units kA/m kA/m A2m−2 A−4m4

Equation (2) (2) (14) (25) (14) (14) (20)
Physical Local dH

dM after Variability Mean of Variance Linear Energy
Meaning rem. switching of Hc Hc (σ = 0) of HI scale term

Parameter γ1(0) γ′1(0) γ2(0) γ′2(0) k1 k2 k3 k4

Units A−2m2 A−2m2Pa−1 A−4m4 A−4m4Pa−1 Pa−1 Pa−2 Pa−3 Pa−1

Equation (20) and (23) (25)
Meaning Energy Coefficients Coercive Field Coefficients

Table 1: Parameters to be identified for model construction.
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4 Model Validation

To illustrate attributes of the magnetomechanical model, we consider four examples in which it is
used to characterize steel and iron data sets from Jiles and Atherton [18], Pitman [21], Birss, Faunce
and Isaac [3] and Craik and Wood [10] for a variety of compounds and input conditions. Details
regarding the specific materials and experimental conditions can be found in the respective citations.
Additional examples illustrating the performance of the model in the absence of applied stresses can
be found in [6, 24–26].

4.1 Jiles and Atherton Data

The data reported in [18] was obtained from a steel sample of length 6 cm and cross-sectional area
1 cm. The composition (% by weight) of the sample was C (0.08), Mn (1.98), S (0.08), P (0.015),
Cu (0.055) and Mo (0.235).

The anhysteretic model (18) is more fundamental than the hysteresis model (16) in the sense
that it does not require local coercive fields. Hence parameters in (18) with the kernel (4) were
estimated first through a least squares fit to the anhysteretic data shown in Figure 2 to obtain the
values summarized in Table 2. We note that k2 = k3 = k4 = 0 since |dσ

dt | = 0. Because the data
exhibits minimal interaction field variability, we employed the constant variance relation b2(σ) = b0

and hence took b1 = b2 = b3 = 0 in (28). The resulting model fits, with induction values computed
using the relation B = µ0(M +H), are shown in Figure 10 where it is observed that through the use
of the two-term Taylor expansion (23), the model quantifies the multiple crossing points associated
with the Villari effect.

To characterize the hysteresis data plotted in Figure 11, the measured coercive field Hc =
0.91 kA/m was employed as an initial value and the parameters Hc and c compiled in Table 2
were estimated through a least squares fit to the symmetric major loop data. Measured periodic
fields having lower amplitudes were subsequently input to the model — using the same parameter
values — to obtain the symmetric minor loop predictions which are also plotted in Figure 11. It
is observed that the model accurately characterizes the hysteretic material behavior throughout the
drive regime, including the approximately quadratic Rayleigh loop behavior at low input fields. The
performance of the framework employing the piecewise quadratic Gibbs relation (3) with σ = 0 is
illustrated in [25].

Parameter MR η c Ĥc b2(σ) C = c1 · c2 γ4

[18] Data 5.40 2.77e-6 0.8 0.25 9.5e+6 1.9e-2 6.6e-15

[21] Data 5.40 1.16e-5 0.1 0.8 see (29) 255.9 8.6e-15

[3] Data 0.74 2.76e-6 0.4 0.028 2.0e+3 9.0 2.5e-14

[10] Data 0.45 3.82e-6 0.9 0.015 1.5e+3 13.2 3.95e-11

Parameter γ1(0) γ′1(0) γ2(0) γ′2(0) k1 k2 k3 k4

[18] Data 4.15e-15 -4.0e-25 -4.65e-23 -6.8e-32 1.0e-9 0 0 0
[21] Data 4.11e-15 -4.9e-24 -4.08e-23 -6.8e-22 2.2e-9 2.0e-17 -1.0e-26 1.2e-8

[3] Data 9.5e-14 -9.1e-23 -5.0e-21 -1.0e-27 1.1e-9 1.0e-15 -1.5e-23 1.0e-8

[10] Data 1.0e-9 -3.5e-22 -4.6e-19 -4.0e-27 1.0e-9 1.0e-17 4.0e-24 5.0e-8

Table 2: Parameters employed in the model fits to data from Jiles and Atherton [18], Pitman [21],
Birss, Faunce and Isaac [3] and Craik and Wood [10]
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Figure 10: (a) Anhysteretic magnetization data from Jiles and Atherton [18], (b) model fit, and
(c) comparison between experimental data and model for stresses of -200 MPa, 0 MPa and 200 MPa.
Abscissas: field (kA/m), ordinates: ∆B (tesla).
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Figure 11: Hysteresis data from Jiles and Atherton [18], major loop fit, and minor loop predictions
with σ = 0.
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4.2 Pitman Data

The Pitman data plotted in Figures 1 and 4 illustrates two manifestations of the magnetomechan-
ical effect: (i) stress-dependence in the interaction field variance b2, remanence, and coercive field
for certain materials, and (ii) stress-induced approach to the anhysteretic magnetization Man or
induction Ban.

To estimate the model parameters summerized in Table 1, we first performed a least squares fit
to the hysteresis data of Figure 1 which was collected at fixed stresses ranging from 100 MPa to
-400 MPa. This yielded the parameter values summarized in Table 2, except for k2–k4 which are
zero when dσ

dt = 0, as well as the coefficients

b1 = 1.0× 105 , b2 = −1.4983× 104 , b3 = 1.7075× 102 , b4 = −2.5917× 10−1 (29)

in the variance relation (28). The model fits in Figure 12 illustrate that the framework quantifies the
decrease in remanence, increase in coercive field, and decrease in differential permeability dB

dH which
occur as compressive stresses of increasing magnitude are applied to the steel rod.

To characterize the decay to the anhysteretic shown in Figure 3, we simulated the experimental
conditions described in Section 1.3. The model was drive to positive or negative saturation and then
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Figure 12: Hysteretic and anhysteretic data from Pitman [21] and model fits for stresses of
(a) 100 MPa, (b) 0 MPa, (c) -200 MPa, and (d) -400 MPa. The vertical line at 80 A/m in (b)
is the fixed field level for the stress-dependent data and model response in Figure 13.
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Figure 13: Pitman data [21] and modeled changes in the induction B due to compressive stresses
with an initial field of 80 A/m: (a) positive remanence, and (b) negative remanence.

held at the constant field value of 80 A/m, indicated by a vertical line in Figure 12(b), while com-
pressive stresses were applied and subsequently released. Because dσ

dt 6= 0, this allowed identification
of the parameters k2–k4 in the relations (25)–(27) used to quantify the local coercive field behavior.

The model fits in Figure 13 demonstrate a reasonably accurate characterization from positive
remanence but a modeled prediction of ∆Ban which is greater than the experimental value when
starting from negative remanence. This is due, at least in part, to a discrepancy in the data. It is
observed in the data of Figure 12(b) that the difference between B and Ban at 80 A/m is roughly
1.6 tesla whereas the data in Figure 13(b) indicates that the anhysteretic is achieved with ∆B less
than 1.4 tesla. A similar, but less significant, discrepancy is noted in the data of Figure 13(a). Hence
the modeled behavior in Figure 13 illustrates that the approach to the anhysteretic is consistent with
the fixed-stress data in Figure 12.

4.3 Data of Birss, Faunce and Isaac

It was noted in Section 1.2 that tensile and compressive stresses can yield asymmetric changes in B
and M , even at low input levels. In this example, we illustrate the performance of the model for
characterizing asymmetric induction changes using iron data from Birss, Faunce and Isaac.

As detailed in [3], the spectrographically pure iron specimen had a diameter of 0.3175 cm and
length of 9.84 cm so there was negligible bending compression. Furthermore, the sample was annealed
at 800 oC for 1 hour. In the experiments yielding the data shown in Figure 14, the specimen was
AC demagnetized at zero stress followed by application of a 40 A/m field. This field value was
subsequently held fixed and tensile forces up to 29 MPa were applied and removed. Following AC
and stress demagnetization, the same procedure was applied with a tensile force up to 50 MPa. The
data for compressive stresses was collected in a similar manner. Analysis of this data indicates that
whereas the response is approximately symmetric for low stress inputs, varying degrees of asymmetry
are manifested even at pascal-level inputs. The slope reversal at approximately -25 MPa indicates
that the anhysteretic induction Ban has been reached whereas tensile stresses in excess of 50 MPa
are required to drive B to Ban.

The model implementation simulated the experimental procedure in the sense that it was initial-
ized at zero magnetization (see [24, 25] for implementation details), a field of 40 A/m was applied
and held fixed, and tensile and compressive stresses were applied and removed. A least squares fit to
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Figure 14: Data from Birss, Faunce and Isaac [3] and model predictions for maximum stress inputs
of ±29 MPa and ±50 MPa at a fixed field value of H = 40 A/m.

the data yielded the parameters summarized in Table 2 and model response shown in Figure 14. It is
noted that the nonzero values of k1 and k3 accommodate the asymmetry noted in the data. Due to
the lack of H-B or H-Ban data to indicate potential variability in b2, we employed the constant value
b2(σ) = b0. Whereas there is a slight discrepancy between the data and model for low compressive
stresses, the framework accurately characterizes the primary magnetomechanical effects manifested
in the data.

4.4 Data of Craik and Wood

We illustrate here the performance of the model for characterizing the asymmetric magnetomechan-
ical behavior of mild steel using data reported by Craik and Wood. As detailed in [10], the specimen
consisted of a steel strip freely sliding in a slotted yoke to permit application of both tensile and
compressive stresses. The experimental procedure is similar to that detailed in Section 4.3, and data
collected at fixed field levels of 26.6 A/m, 80 A/m, and 132 A/m with input stresses up to ±100 MPa
is shown in Figure 15(a).

The model fit in Figure 15(b), obtained with the parameter values in Table 2, illustrates that the
model characterizes the qualitative material behavior at all three field levels including the reversal
in slope when the anhysteretic is reached. The discontinuity in dB

dσ at σ = 0 is accommodated by
the k4 term in the coercive field relations (26)–(27). Hence the model achieves criteria (i) and (ii)
of Section 1.2. The primary discrepancy between the model and data occurs after the anhysteretic
is achieved where the data exhibits a loss (multivalued loop) upon stress reversal whereas the model
predicts no loss. The source of this phenomenon in the data is unexplained and is hypothesized to
be due to mechanical losses in the supporting yoke which are not accommodated by the magnetome-
chanical model.
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Figure 15: (a) Data from Craik and Wood [10], and (b) model fits for 100 MPa inputs at fixed field
levels of H = 26.6 A/m, H = 80 A/m, and H = 132 A/m. Abscissas: stress (MPa), ordinates:
∆B (tesla).

5 Concluding Remarks

The model developed in this paper quantifies aspects of the direct magnetomechanical effect inherent
to ferromagnetic materials. The nucleus of the model is the framework developed in [24–26] to quan-
tify the hysteretic and nonlinear H-B and H-M behavior of the materials in the absence of applied
stresses. In the first step of the development, Helmholtz and Gibbs energy relations are constructed
to quantify the internal and magnetostatic energies. For homogeneous and isotropic materials, min-
imization of the Gibbs energy provides a macroscopic model for operating regimes in which thermal
relaxation is negligible. To accommodate thermal relaxation or magnetic after-effects, the Gibbs and
relative thermal energies are balanced using Boltzmann principles. In the second step of the develop-
ment, the effects of polycrystallinity, material nonhomogeneities and inclusions, and variable effective
fields are incorporated through the assumption that local coercive and effective fields are manifesta-
tions of underlying distributions. Stochastic homogenization in this manner yields low-order models
that are sufficiently accurate for a wide range of material characterization and sufficiently efficient
to be employed for transducer design and model-based control implementation. It is demonstrated
in [6, 24–26] that the original ferromagnetic hysteresis framework accurately quantifies major and
biased minor loop behavior, certain accommodation phenomena, and magnetic after-effects in the
absence of applied stresses.

The complexity of mechanisms which contribute to the magnetomechanical effect presently pre-
cludes construction of low-order macroscopic models based solely on energy principles. To achieve
the efficiency required for design and control purposes, we instead use physical principles to motivate
phenomenological representations quantifying the effect of stress on the local coercive field mean
and interaction field variance. Because the coercive field relation can be interpreted as a paramet-
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ric representation for an unnormalized density, this approach is commensurate with the strategy
underlying both the energy-based hysteresis framework [24–26] and various classical and extended
Preisach models of employing stochastic homogenization techniques to improve model accuracy and
efficiency when quantifying stochastic, highly complex, or poorly understood physical phenomena.
As illustrated through comparison and prediction of experimental data, the resulting model provides
the capability for quantifying stress-dependence in the remanence, coercive field, and interaction field
variance, the approach to the anhysteretic, and asymmetric tensile/compressive behavior.

The present model was framed in the context of the a priori choices (14) of a lognormal represen-
tation for the local coercive field and a normal or Gaussian representation for the local interaction
field. These choices satisfy the physical requirements (13) but can yield limited accuracy for high fi-
delity characterization for certain materials and operating conditions. It is demonstrated in [6,24,25]
that the identification of general density values ν1(Hci) and ν2(HIj ) provides the framework with
additional accuracy and flexibility. The extension of these techniques to magnetomechanical phe-
nomena and the development of techniques to identify general density representations for Hc(σ) and
b2(σ) are under current investigation.

The present framework does not incorporate eddy current losses and hence it should be restricted
to drive regimes or transducer designs where these effects are minimal. It also does not incorporate
crystalline anisotropy and extension of the theory to accommodate uniaxial and cubic anisotropies
constitutes current research. Aspects of the converse magnetomechanical effect have been addressed
in [24,26] but comprehensive validation of constitutive relations and transducer models incorporating
the combined direct and converse effects is under investigation.

A Solution of Cubic Equations

Consider the cubic equation
z3 + a2z

2 + a1z = 0. (30)

If we let
q =

1
3
a1 −

1
9
a2

2

r =
1
6
(a1a2 − 3a0)−

1
27

a3
2,

(31)

then the following solution criteria hold:

q3 + r2 > 0, one real root, a pair of complex conjugate roots,
q3 + r2 = 0, all roots real, at least two are equal,
q3 + r2 < 0, all roots real, irreducible case.

The roots are given by
z1 = (s1 + s2)−

a2

3

z2 = −1
2
(s1 + s2)−

a2

3
+

i
√

3
2

(s1 − s2)

z2 = −1
2
(s1 + s2)−

a2

3
− i

√
3

2
(s1 − s2)

(32)

where
s1 =

(
r +

√
q3 + r2

)1/3
, s2 =

(
r −

√
q3 + r2

)1/3
. (33)
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For the cubic equation (24), q and r are given by

q =
1
12

[
η − 2γ1(σ)σ
γ4 − γ2(σ)σ

]
, r = −1

8

[
µ0H + ηδMR

γ2(σ)σ − γ4

]
.

For the parameter choices employed in the validation in Section 4, q3 + r2 > 0 so we use the real
root z1 = s1 + s2.
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